Bilirubin Nanomedicines for the Treatment of Reactive Oxygen Species (ROS)-Mediated Diseases

Author:

Gupta Yash,Shikha Riya,Rai Vishal,Bano Nisha,Khan Soban,Yadav Reena

Abstract

Bilirubin, a natural product of heme catabolism, has recently emerged as a promising candidate in nanomedicine for the treatment of Reactive Oxygen Species (ROS)-mediated diseases. ROS, including free radicals and other oxygen-derived molecules, play a pivotal role in various pathological conditions such as inflammation, neurodegenerative disorders, and cardiovascular diseases. Bilirubin's potent antioxidant properties make it an attractive therapeutic agent, and recent advancements in nanotechnology have paved the way for its effective delivery and application in treating ROS-related ailments.This abstract delves into the potential of bilirubin-based nanomedicines in combating ROS-induced damage. The encapsulation of bilirubin within nanocarriers enhances its stability, bioavailability, and targeted delivery to affected tissues. The utilization of nanoscale systems not only safeguards bilirubin from degradation but also allows for controlled release, ensuring sustained therapeutic effects.The multifaceted mechanisms of bilirubin action include its ability to scavenge free radicals, modulate inflammatory responses, and protect cellular components from oxidative stress. The encapsulation of bilirubin in nanoparticles further improves its pharmacokinetics, enabling efficient distribution and accumulation at disease sites. Moreover, the nanocarrier systems can be engineered to respond to specific stimuli, facilitating site-specific release of bilirubin in response to the elevated ROS levels characteristic of pathological conditions.This abstract also highlights the versatility of bilirubin nanomedicines in addressing diverse ROS-mediated diseases. From neuroprotection in conditions like Alzheimer's and Parkinson's diseases to alleviating oxidative stress in cardiovascular disorders, bilirubin-based nanotherapeutics exhibit a broad spectrum of applications. The tailored design of nanocarriers allows for personalized treatment approaches, catering to the unique characteristics of each disease state.

Publisher

Stallion Publication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3