Meta-monitoring system for ensuring a fault tolerance of the intelligent high-performance computing environment

Author:

Sidorov I.A.,Sidorova T.V.,Kurzibova Ya.V.

Abstract

The high-performance computing systems include a large number of hardware and software components that can cause failures. Nowadays, the well-known approaches to monitoring and ensuring the fault tolerance of the high-performance computing systems do not allow to fully implement its integrated solution. The aim of this paper is to develop methods and tools for identifying abnormal situations during large-scale computational experiments in high-performance computing environments, localizing these malfunctions, automatically troubleshooting if this is possible, and automatically reconfiguring the computing environment otherwise. The proposed approach is based on the idea of integrating monitoring systems, used in different nodes of the environment, into a unified meta-monitoring system. The use of the proposed approach minimizes the time to perform diagnostics and troubleshooting through the use of parallel operations. It also improves the resiliency of the computing environment processes by preventive measures to diagnose and troubleshoot of failures. These advantages lead to increasing the reliability and efficiency of the environment functioning. The novelty of the proposed approach is underlined by the following elements: mechanisms of the decentralized collection, storage, and processing of monitoring data; a new technique of decision-making in reconfiguring the environment; the supporting the provision of fault tolerance and reliability not only for software and hardware, but also for environment management systems.

Publisher

Crossref

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-healing Systems Monitoring;Advances in Self-healing Systems Monitoring and Data Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3