A hybrid neural network goal attain optimization for failed sensor(s) radiation pattern in linear array

Author:

Boopalan Navaamsini1,Ramasamy Agileswari K.2,Nagi Farrukh Hafiz3

Affiliation:

1. Department of Electronics and Communications Engineering, University Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

2. Department of Electronics and Communications Engineering, U

3. Department of Mechanical Engineering, University Tenaga Nasional, 43000 Kajang, Selangor, Malaysia

Abstract

Array sensors are widely used in various fields such as radar, wireless communications, autonomous vehicle applications, medical imaging, and astronomical observations fault diagnosis. Array signal processing is accomplished with a beam pattern which is produced by the signal's amplitude and phase at each element of array. The beam pattern can get rigorously distorted in case of failure of array element and effect its Signal to Noise Ratio (SNR) badly. This paper proposes on a Hybrid Neural Network layer weight Goal Attain Optimization (HNNGAO) method to generate a recovery beam pattern which closely resembles the original beam pattern with remaining elements in the array. The proposed HNNGAO method is compared with classic synthesize beam pattern goal attain method and failed beam pattern generated in MATLAB environment. The results obtained proves that the proposed HNNGAO method gives better SNR ratio with remaining working element in linear array compared to classic goal attain method alone. Keywords: Backpropagation; Feed-forward neural network; Goal attain; Neural networks; Radiation pattern; Sensor arrays; Sensor failure; Signal-to-Noise Ratio (SNR)

Publisher

Global Academy of Training and Research (GATR) Enterprise

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Binary Sequence-Based Fault Detection in Linear Antenna Array;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3