Numerical Analysis of Convective Heat Transfer for Selected Geometric System

Author:

Orłowska Magdalena1ORCID

Affiliation:

1. Koszalin University of Technology, Poland

Abstract

The contemporary problems and issues of environmental protection refer to a large extent to problems related – generally speaking – with energy. Currently, the production processes mainly concern the combustion of energy fuels, transport – over long distances – by means of transport, their use for utility purposes, e.g. engine drive or heating. All these processes have a significant negative impact on the environment and are magnified by their enormous intensity and enormous size. While the processes of energy production and transport have been studied for many years, and their result are widely published, the issues related to the application and operation of heating devices are little known and require much observation and research. The operating indicators of heating devices are generally characterized by low values (natural convection) and their artificial increase (intensity) cannot be used due to the acoustic effects and additional (significant) investment costs. The article presents some results of research on the intensification of heat flow – i.e. the thermal efficiency of flat heaters placed in a room with a specific temperature. Physical phenomena were investigated numerically by shaping the heat exchange space. The tested systems concerned a room with a free-standing heater, a heater with a vertical panel mounted in parallel, and a system with a curved bottom plate forming the so-called de Laval nozzle. Interesting results of air velocity and temperature fields as well as values of the heat transfer coefficient along the height of the heater were obtained. Based on the presented research, it can be concluded that the creation of convection surfaces around the heater is advisable because it affects the intensity of heat exchange, which can be increased without energy-intensive energy expenditure, i.e. in a non-mechanical way. Undoubtedly contributes positively to investment and operating costs, which is so important in issues related to environmental protection.

Publisher

Politechnika Koszalinska

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3