Evaluation of Sulphur Dioxide Hourly Prediction Using Long Short-term Memory for Summer and Winter Season

Author:

Bennis Mohammed1,Youssfi Mohammed1ORCID,Morabet Rachida El2ORCID,Alsubih Majed3ORCID,Prayanagat Muneer3,Khan Roohul Abad3ORCID

Affiliation:

1. University Hassan II Casablanca, Morocco

2. Hassan II University of Casablanca, Morocco

3. King Khalid University, Abha, Saudi Arabia

Abstract

Increasing air pollution has necessitated the prediction of pollutants over time. Deterministic, statistical, and machine-learning methods have been adopted to predict and forecast pollutant levels. It aids in planning and adopting measures to overcome the adverse effects of air pollution. This study employs long short-term memory (LSTM). This study used the hourly data from a meteorological station in a low-town area, Mohammedia City, Morocco. The model prediction accuracy was evaluated based on hourly, weekly, and seasonal (summer and winter) readings for the summer and winter of 2019, 2020 and 2021. Root mean square error (RMSE), mean absolute error (MAE) and mean arctangent absolute percentage error (MAAPE) were calculated to evaluate the accuracy of the developed LSTM model. The MAE value of 0.026 was observed to be less in winter than 0.029 during summer in 2019. Also, it was observed that MAE values decreased from Year 2019-2021, indicating increased prediction accuracy. MAAPE also observed a similar trend. However, RMSE values indicated the opposite for 2019 and 2020; in 2021, the RMSE value was 0.21 for summer and 0.14 for winter for hourly readings. Based on the error calculation, the study found weekly hourly readings were the most accurate for predicting SO2 concentration. Also, the LSTM model was more accurate in predicting winter SO2 concentration than in the summer season. Further studies must incorporate local incidences affecting the SO2 concentration into the LSTM model to increase its accuracy.

Publisher

Politechnika Koszalinska

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3