Affiliation:
1. Lanzhou Jiaotong University, China
2. Qinghai University, China
3. Biotechnology Industrial Park Administrative Committee of Qinghai Province, China
4. China Institute of Water Resources and Hydropower Research, China
Abstract
Qinghai has a high altitude, low average temperature and low oxygen concentration, but it has abundant power resources, so it has a good application prospect to use electrochemical oxidation to degrade refractory organic matter. In this study, a three-dimensional electrode electrochemical oxidation system was constructed with powdered activated carbon as the particle electrode, graphite as the anode and stainless steel as the cathode, and the electrochemical oxidation degradation effect of DBP simulated wastewater at high altitude was studied. When applying the system to the simulated wastewater, the maximum chemical oxygen demand (COD) removal rate reached 61.75% at a plate spacing of 5 cm, electrolyte and particle-electrode dosages of 12 g and 35 g, respectively, and an electrolytic voltage of 20 V. Electrolyte voltage is the most influential factor in the COD removal rate, followed by plate spacing, electrolyte dosage, and particle electrode dosage. The graphite electrode was confirmed to be higher-value than ruthenium–iridium, titanium mesh, and lead dioxide electrodes.