TEST METHOD TO DETERMINE THE ACOUSTIC PROPERTIES OF BUILDING MATERIAL BY USING MICROPHONE IMPEDANCE TUBE

Author:

Dogra Sourabh,Gupta Arpan

Abstract

The paper discusses a simple and low-cost method to design four microphone impedance tube of measuring the acoustic properties of building materials. The acoustic properties of the material are defined by the reflection coefficient, absorption coefficient, and transmission coefficient. The experimental setup follows the ASTM-E2611 standard of four microphone impedance tube with two load boundary conditions to measure these coefficients. The setup consists of four microphones around a brass tube with the speaker at one end and termination at the other. Raw data from the four microphones is obtained through a Virtual Instrument (VI) program developed in LabView. The novelty in the design is the tapered connection between the two pipes connected via the sample holder. The mathematical equation involved in estimating acoustical properties is solved in MATLAB 2019a. The reflection and absorption coefficient data of ephony fibbrette of 15 mm thickness are compared with the data provided by an accredited laboratory. The experimental results of the in-house designed impedance tube are in good agreement with the lab results. This material is used in the auditorium, theatres for hearing comfort. Further, two new samples of ephony fibbrette along with wood fibre cement and damper has been analysed. It has been found that adding a layer of wood fibre results in an increase in the absorption coefficient whereas the addition of the damper results in an increase in the reflection coefficient.

Publisher

Studio D - akustika s.r.o.

Subject

Acoustics and Ultrasonics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3