Synthesis and characterization of Nano ashes from different waste materials and their effects on the compressive strength of sustainable concrete: A systematic review

Author:

Ahmed Hemn,Ibrahim Dalya,Mustafa Rozhno,Faraj Rabar

Abstract

Nanotechnology can be regarded as one of the new research fields having novelty and important applications that recently gained attention, especially during the last twenty years. The implementation of nanotechnology produces materials with novel characteristics and recently many works were conducted to include nanoparticles (NPs) in cement-based materials to improve performance and manufacture concrete with better behavior under different mechanical and environmental conditions. Previous studies demonstrated that different waste ashes such as, fly ash, cement kiln dust, palm oil fuel ash, eggshell ash, Metakaolin, and waste ceramic ash can be efficiently converted to sustainable nano ashes. The chemical and physical properties of the produced nano ashes were significantly different from their parent ashes. Therefore, the concrete produced with these nano ashes had superior properties compared to the normal concrete made with traditional waste ashes. This paper presents a systematic overview of the synthesis and characterization of different nano ashes and their impacts on the performance of concrete mixtures. Based on the results from the comprehensive review, it was illustrated that the specific surface to volume ratio was considerably increased by converting the ashes to nano ashes, thus the properties of concrete were also improved. Moreover, due to the higher specific surface area of nano ashes and their reaction with undesirable C-H which is present in the cement paste matrix to produce additional C-S-H, the microstructure of concrete was considerably enhanced.

Publisher

Journal of Zankoy Sulaimani - Part A

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3