Long-term degradation, damage and fracture in deep rock tunnels: A review on the effect of excavation methods

Author:

Frenelus Wadslin1ORCID,Peng Hui1,Zhang Jingyu1

Affiliation:

1. Department of Hydraulic Engineering, College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China

Abstract

Rocks are frequently host materials for underground structures, particularly for deep Tunnels. Their behavior plays a fundamental role in the overall stability of these structures. In fact, the erection of deep tunnels imposes rocks excavations around the defined routes. These excavations are generally carried out by various methods of which the most used are Drill-and-Blast (DB) and Tunnel Boring Machine (TBM).  However, regardless of the tunnelling method used, the impacts such as the perturbation of the initial stress field in rocks and the release of the stored energy are always significant. The impacts produce damage, fractures and deformations which are generally time-dependent and influence the long-term stability of deep tunnels built in rocks. Thus, by considering the aforementioned excavation methods, this paper identifies, reviews and describes the relevant factors generated during and after rock excavations. Interestingly, such factors directly or indirectly influence the long-term stability and therefore the structural integrity of deep rock tunnels. In addition, some recommendations and proposals for future works are presented. This paper can provide useful references in understanding the degradations, damage and fractures generated by tunnelling methods and facilitate suitable actions to ensure long-term stability of deep underground structures.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3