A probabilistic interpretation of the Miner number for fatigue life prediction

Author:

Fernández-Canteli A.,Blasón S.,Correia J.A.F.O.,de Jesus A.M.P.

Abstract

The Miner number M, used as a tool for lifetime prediction of mechanical and structural components in most of the standards related to fatigue design, is generally accepted as representing a damage stage resulting from a linear progression of damage accumulation. Nonetheless, the fatigue and damage approach proposed by Castillo and Fernández-Canteli, permits us to reject this conventional cliché by relating M to the normalized variable V, which represents percentile curves in the S-N field unequivocally associated to probability of failure. This approach, allowing a probabilistic interpretation of the Miner rule, can be applied to fatigue design of mechanical and structural components subjected to variable amplitude loading. The results of an extensive test program on concrete specimens under compressive constant and load spectra, carried out elsewhere, are used. A parallel calculation of the normalized variable V and the Miner number M is performed throughout the damage progression due to loading allowing probabilities of failure to be assigned to any value of the current Miner number. It is found that significant probabilities of failure, say P=0.05, are attained for even low values of M, thus evidencing the necessity of a new definition of the safety coefficient of structural or machine components when the Miner rule is considered. The experimental and analytical probability distributions of the resulting Miner numbers are compared and discussed, the latter still providing a nonconservative prediction in spite of the enhancement. A possible correction is analyzed.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3