Damage assessment in beam-like structures by correlation of spectrum using machine learning

Author:

Pham Bao Toan1ORCID,Le-Ngoc Vien1,Vuong Cong Luan1,Ngo Kieu Nhi1

Affiliation:

1. Laboratory of Applied Mechanics (LAM), Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Viet Nam.

Abstract

Damage assessment in the actual operating process of the structure is a modern and exciting problem of construction engineering due to several practical knowledge about the current condition of the inspected structures. However, the problem faced is the difficulty in controlling the excitation in structures. Therefore, the output-based structural damage identification method is becoming attractive because of its potential to be applied to an actual application without being constrained by the collection of the information excitation source. An approach of damage assessment based on supervised Machine Learning is introduced in this study by using the correlation of spectral signal as an input feature for artificial neural network (ANN) and decision tree. The output of machine learning algorithms consists of the appearance of new cuts, the level of cutting and the cutting position. A supported beam model was constructed as an experiment to determine if the method is reasonable for engineering structures. Two machine learning algorithms have been applied to check the relevance of the proposed feature from vibration data. This study contributes a standard in the damage identification problem based on spectral correlation.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3