Numerical analysis of repaired wall loss defect pipelines for optimum composite wrap thickness

Author:

Khaise Muhammed1,de Barros Silvio2,Rohem Ney3,Banea Maria4,Budhe Sandip1ORCID

Affiliation:

1. National Institute of Technology Calicut, 673601, India

2. CESI LINEACT, Saint-Nazaire, France

3. Instituto Federal Fluminense, Rio de Janeiro, Brazil

4. Federal Center of Technological Education (CEFET/RJ), Rio de Janeiro, 20271-110, Brazil

Abstract

The paper presents the numerical analysis of failure pressure of wall loss defect metallic pipelines and validate it with experimental results. An optimization of composite thickness for repair of wall loss defect pipeline is also carried out using numerical analysis. A nonlinear explicit FE code with constitutive models for metallic steel and composite material to failure modelling was used. Three different cases: non-defective pipe, wall loss defective pipe and composite repaired of defective pipe are considered. It was found that the numerical results are in good agreement with the analytical results in all the three cases. The theoretical failure pressure determined by ISO/TS 24817 standard for wall loss defect pipe is highly conservative compared to the numerical failure pressure for the given composite repair thickness. Additionally, the numerical study on optimization of repair thickness revealed that lower composite repair thickness can also sustain the designed failure pressure (composite repair thickness of 8.4 mm can sustain the same designed pressure instead of 16.1 mm thickness), which implies there is scope to further reduce the composite thickness, which ultimately reduce the repair cost.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3