Deep Learning algorithm for the assessment of the first damage initiation monitoring the energy release of materials

Author:

Milone Dario1ORCID,Santonocito Dario1

Affiliation:

1. University of Messina, Italy

Abstract

Monitoring the energy release during fatigue tests of common engineering materials has been shown to give relevant information on fatigue properties, reducing the testing time and material consumption. During a static tensile test, it is possible to assess two distinct phases: In the first phase (Phase I), where all the crystals are elastically stressed, the temperature trend follows the linear thermoelastic law; while, in the second phase (Phase II), some crystals begin to deform, and the temperature assumes a non-linear trend. The macroscopic transition stress between Phase I and Phase II could be related to the “limit stress” that, if cyclically applied, would lead to material failure. Nowadays, it is impossible to distinguish the transition between Phase I and Phase II in an objective way. Indeed, it is up to the operator's experiences. This work aims to create a universal methodology that predicts the limit stress by assessing the change in temperature trend by adopting Neural Networks. A Deep Learning algorithm has been created and trained on experimental data coming from static tensile tests performed on several classes of materials (steels, plastics, composite materials). Once trained, the network can predict the transition temperature at which the first plastic deformation occurs within the material.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3