Exploring strength and ductility responses of beam-column joints using UHPC and UHPFRC employing concrete damaged plasticity

Author:

Santos da Silveira Guilherme1,Natã Zenatti Carlos1,de Miranda Saleme Gidrão Gustavo1ORCID,Mara Bosse Rúbia1,Rogério Novak Paulo1

Affiliation:

1. Federal University Technology of Paraná - UTFPR, Brazil

Abstract

Structures subjected to severe loads, such as earthquakes, often develop cracks at the beam-column joints, underscoring the significance of these regions in design. This study focuses on a comparative analysis of beam-column joints constructed with Ultra-High-Performance Concrete (UHPC) and Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) using the Finite Element Method (FEM) within the Abaqus software, contrasting with Low-Strength Concrete (LSC) and Normal-Strength Concrete (NSC). The results underscore the superiority of UHPFRC in compressive and tensile strength, coupled with enhanced ductility. Furthermore, distinct failure mechanism are observed in the concretes, captured by concrete damaged plasticity (CDP), leading to a deeper understanding of the behavior of these high-strength materials. These findings carry significant implications for enhancing structural safety and performance, particularly in situations involving seismic or other severe loads.

Publisher

Gruppo Italiano Frattura

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3