Ultrasonic fatigue testing of AISI 304 and 316 stainless steels under environmental and immersion conditions

Author:

Torres Duarte Luis M.1,Domínguez Almaraz Gonzalo Mariano1ORCID,Venegas Montaño Hipólito M.1

Affiliation:

1. University of Michoacán (UMSNH), Faculty of Mechanical Engineering, Santiago Tapia 403, Col. Centro, Morelia, 58000, Mexico

Abstract

Ultrasonic fatigue tests were carried out on stainless steel AISI 316 and 304, under two modalities: at room temperature and in immersion (water for 316 and antifreeze for 304 steels); all tests were carried out with a loading ratio R=-1. The results obtained in the tests at room temperature (without immersion), for both materials exhibited a significant increase in temperature, leaving heat marks on the narrow section of the specimens. This phenomenon occurred due to the low coefficient of thermal conductivity of these stainless steels (16.2 W/ (m °K)), and the recorded temperatures were around 200 °C, generating instantaneous failure of material. Analyzes of fracture surfaces on specimens tested at room temperature reveal that crack initiation was related to the high temperature, causing alteration at the granular scale of the material, followed by a typical behavior crack propagation and failure. For specimens tested under immersion conditions, it was possible to reduce the temperature below 100 °C, which solved the problem of failure due to thermal effect. The results for 316 stainless steel immersed in water showed a fatigue life of 1.188×1010 cycles at188 MPa of stress loading in the specimen; while specimens subjected to 263 MPa stress showed a fatigue life of around 7×106 cycles, representing a significant reduction with an approximate factor of 1700. On the other hand, specimens of 304 stainless steel immersed in antifreeze with the lowest loading values of 169 MPa, showing an infinite ultrasonic fatigue life; while tests subjected to 263 MPa loading stress attains 3.62×106 cycles of ultrasonic fatigue life. The scanning electron microscopy visualizations for both cases of immersion tests showed that the initiation and propagation of the crack occurred on the surface of the specimens, exhibiting the typical mechanical fracture behavior without any apparent thermal influence.

Publisher

Gruppo Italiano Frattura

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3