Vibration control in buildings under seismic excitation using optimized tuned mass dampers

Author:

Brandão Francisco da Silva1,Miguel Letícia Fleck Fadel2

Affiliation:

1. PPGEC/UFRGS and Centro Universitário Ritter dos Reis – UniRitter, Brazil

2. Department of Mechanical Engineering, Federal University of Rio Grande do Sul, Brazil

Abstract

Earthquakes can cause vibration problems in many types of structures, generating large displacements. The interstory drift is a design criterion very used in seismic analysis and the structural control is an alternative to reduce these displacements and improve the performance of these structures adapting them to the imposed criteria. TMD is a device widely used due to the simple principle of operation and many successful applications in real life practice. This paper investigates the use of optimized TMD for reduction of maximum horizontal displacement at the top floor and interstory drift of a steel building under seismic excitation considering three scenarios: single TMD at the top floor; MTMD horizontally arranged at the top floor; and MTMD vertically arranged on the structure. By a metaheuristic optimization algorithm, the parameters and positions of the devices are obtained. Three real and one artificial earthquakes are employed in the simulations. The results showed that all proposed scenarios are efficient in reducing top floor response and interstory drift to values below of the interstory drift limits allowed by the standard code consulted. However, Scenario 2 presented the best reduction for the top displacement and interstory drift to the critical floor for the worst earthquake considered.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3