Weight optimization of steel lattice transmission towers based on Differential Evolution and machine learning classification technique

Author:

Nguyen Tran-Hieu1ORCID,Vu Anh-Tuan1

Affiliation:

1. Hanoi University of Civil Engineering, Viet Nam

Abstract

Transmission towers are tall structures used to support overhead power lines. They play an important role in the electrical grids. There are several types of transmission towers in which lattice towers are the most common type. Designing steel lattice transmission towers is a challenging task for structural engineers due to a large number of members. Therefore, discovering effective ways to design lattice towers has attracted the interest of researchers. This paper presents a method that integrates Differential Evolution (DE), a powerful optimization algorithm, and a machine learning classification model to minimize the weight of steel lattice towers. A classification model based on the Adaptive Boosting algorithm is developed in order to eliminate unpromising candidates during the optimization process. A feature handling technique is also introduced to improve the model quality. An illustrated example of a 160-bar tower is conducted to demonstrate the efficiency of the proposed method. The results show that the application of the Adaptive Boosting model saves about 38% of the structural analyses. As a result, the proposed method is 1.5 times faster than the original DE algorithm. In comparison with other algorithms, the proposed method obtains the same optimal weight with the least number of structural analyses.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3