ANSYS implementation of the phase field fracture approach

Author:

Kosov Dmitry1ORCID,Tumanov Andrey1,Shlyannikov Valery1ORCID

Affiliation:

1. FRC Kazan Scientific Center of Russian Academy of Sciences, Russia

Abstract

In this study, we present a new implementation of the phase field fracture approach in the finite element code ANSYS and its numerical background. The framework is general, and is supported by addressing several classical 2D boundary value problems as well as the ductile fracture and 3D surface flaws behaviors of particular interest. The 3D implementation exploits the analogy between the phase field formulations and the magnetic vector potential equation. The influence of the mode mixity and biaxiality loading conditions of the cracked bodies on phase fields is evaluated as a function of the crack length scale parameter, characterising the scale at which damage effects become significant. As a result of the FE calculations of phase field distributions for propagating cracks, the effects of both the fracture mode and the biaxial stress-strain state are determined. The size of the fracture process zone or damaged region is determined across a wide range of cracked body loading conditions. Developed code: https://github.com/Andrey-Fog/ANSYS-USERELEMENT-PHFLD.

Publisher

Gruppo Italiano Frattura

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3