New experimental techniques for fracture testing of highly deformable materials

Author:

Dall’Asta E.,Ghizzardi V.,Brighenti R.,Romeo E.,Roncella R.,Spagnoli A.

Abstract

A new experimental method for measuring strain fields in highly deformable materials has been developed. This technique is based on an in-house developed Digital Image Correlation (DIC) system capable of accurately capturing localized or non-uniform strain distributions. Thanks to the implemented algorithm based on a Semi-Global Matching (SGM) approach, it is possible to constraint the regularity of the displacement field in order to significantly improve the reliability of the evaluated strains, especially in highly deformable materials. Being originally introduced for Digital Surface Modelling from stereo pairs, SGM is conceived for performing a one-dimensional search of displacements between images, but here a novel implementation for 2D displacement solution space is introduced. SGM approach is compared with the previously in-house developed implementation based on a local Least Squares Matching (LSM) approach. A comparison with the open source code Ncorr and with some FEM results is also presented. The investigation using the present DIC method focuses on 2D full-field strain maps of plain and notched specimens under tensile loading made of two different highly deformable materials: hot mix asphalt and thermoplastic composites for 3D-printing applications. In the latter specimens, an elliptical hole is introduced to assess the potentiality of the method in experimentally capturing high strain gradients in mixed-mode fracture situations.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3