Corrosion behavior of Shape Memory Alloy in NaCl environment and recovery maintenance in Cu-Zn-Al sysytem

Author:

Brotzu Andrea1ORCID,De Filippo Barbara2,Natali Stefano1,Zortea Laura3

Affiliation:

1. Department of Chemical Engineering, Material, Environments (DICMA) Sapienza, University of Rome (Italy)

2. Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “Mauro Picone”, Rome (Italy)

3. Department of Chemical Engineering, Material, Environments (DICMA) Sapienza, University of, Rome (Italy)

Abstract

Shape memory effect (SME) and the relation with corrosion behavior of Cu-Zn-Al Smart Memory Alloys (SMAs) were investigated using different techniques: Scanning Electron Microscopy equipped with an Energy Dispersive System, X-Ray Diffraction analysis, Electrochemical Test in NaCl solutions with different concentrations (0.035%, 0.35% and 3.5%), which simulate coastal conditions, mechanical characterization through tensile test and guided bend test.  SMAs are an important class of smart materials able to recover after deformation a pre-imposed shape through a temperature modification. These alloys show great potential, finding several applications in medicine and in different types of industry sectors (aerospace, architecture, automotive etc.). Cu-based SMAs, including Cu-Zn-Al alloys, have lower production costs with respect to Ni-Ti alloys as well as good possibility in seismic and architectural applications. A Cu-Zn-Al alloy with a theoretical composition of 25 wt.% Zn and 4 wt.% Al was produced by casting method. The aim of this study is to characterize the microstructure, the mechanical properties and the corrosion behavior through different kind of standard corrosion tests of this alloy and to evaluate the effect of corrosion damage on the shape memory recovery capability through a combination of corrosion and thermos-mechanical cyclic test and SEM observation

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3