Numerical and analytical simulation of ballistic projectile penetration due to high velocity impact on ceramic target

Author:

Moslemi Petrudi Amin1,Vahedi Khodadad1,Rahmani Masoud1,Moslemi Petrudi MohammadAli2

Affiliation:

1. Department of Mechanical Engineering, Tehran University, Iran

2. Department of Maritime Engineering, Amirkabir University, Tehran, Iran

Abstract

Simulation and analysis of the projectile impact and penetration problem and its effects are among the practical topics that can be used to design bulletproof panel and military equipment, construction of impact and penetration resistant structures, design of projectiles with appropriate penetration strength and High performance noted. One of the most important parameters affecting penetration is the impact velocity of the projectile. The mechanism of penetration varies in different speed ranges. In this paper, Ansys Autodyn software is used for intrusion simulation. The simulation carried out in this study is based on the accuracy and physical conditions of the problem and the compatibility of numerical simulation with the governing analytical relationships indicates the validity and accuracy of the assumptions made in the simulation. In this study, we selected materials such as material behavior, grating, contact surfaces, and controls, as well as collision of the blunt projectile with angles of 0º,15º,30º,45º by of high velocity impact 1000 m/s with the same mass and diameter and shape of the projectile nose and properties. Ceramic materials are discussed. The result of the numerical simulation comparison shows relatively good agreement between them.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3