Elastic wave propagation and stop-band generation in strongly damaged solids

Author:

Carta G.1,Brun M.1,Movchan A.B.2

Affiliation:

1. Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy

2. Department of Mathematical Sciences, University of Liverpool, UK

Abstract

In this work, we study the propagation of elastic waves in elongated solids with an array of equallyspaced deep transverse cracks, focusing in particular on the determination of stop-bands. We consider solids with different types of boundary conditions and different lengths, and we show that the eigenfrequencies associated with non-localized modes lie within the pass-bands of the corresponding infinite periodic system, provided that the solids are long enough. In the stop-bands, instead, eigenfrequencies relative to localized modes may be found. Furthermore, we use an asymptotic reduced model, whereby the cracked solid is approximated by a beam with elastic connections. This model allows to derive the dynamic properties of damaged solids through analytical methods. By comparing the theoretical dispersion curves yielded by the asymptotic reduced model with the numerical outcomes obtained from finite element computations, we observe that the asymptotic reduced model provides a better fit to the numerical data as the slenderness ratio increases. Finally, we illustrate how the limits of the stop-bands vary with the depth of the cracks.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3