Acoustic Analysis Using Symmetrised Implicit Midpoint Rule

Author:

Razali Noorhelyna1ORCID,Masnoor Nisa Balqis1ORCID,Abdullah Shahrum1,Mohd Zainaphi Muhammad Faiz Hilmi1

Affiliation:

1. Department of Mechanical and Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

Abstract

In wave propagation phenomena, time-advancing numerical methods must accurately represent the amplitude and phase of the propagating waves. The acoustic waves are non-dispersive and non-dissipative. However, the standard schemes both retain dissipation and dispersion errors. Thus, this paper aims to analyse the dissipation, dispersion, accuracy, and stability of the Runge–Kutta method and derive a new scheme and algorithm that preserves the symmetry property. The symmetrised method is introduced in the time-of-finite-difference method  for solving problems in aeroacoustics. More efficient programming for solving acoustic problems in time and space, i.e. the IMR method for solving acoustic problems, an advection equation, compares the square-wave and step-wave Lax methods with symmetrised IMR (one-and two-step active). The results of conventional methods are usually unstable for hyperbolic problems. The forward time central space square equation is an unstable method with minimal usefulness, which can only study waves for short fractions of one oscillation period. Therefore, nonlinear instability and shock formation are controlled by numerical viscosities such as those discussed with the Lax method equation. The one- and two-step active symmetrised IMR methods are more efficient than the wave method.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3