Repair and rehabilitation of corroded HDPE100 pipe using a new hybrid composite

Author:

Regad Abdelmalek1,Benzerga Djebara1,Berrekia Habib1,Haddi Abdelkader2,Chekhar Nourredine3

Affiliation:

1. LSCMI, University of Sciences and Technology of Oran, Mechanical Department, B.P. 1505, 31000 Oran, Algeria

2. University of Artois, EA 4515, Laboratoire de Génie Civil et géo-Environnement, Béthune F-62400, France

3. Production Director - PTI Polymer Transformation Innovation, Oran, Algeria

Abstract

The good management of drinking water begins with a supply network, with a low rate of leakage. Currently, the pipes used in the water transport system are mainly made of polymeric materials, such as HDPE. The corrosion degradation of this type of pipe has received a lot of attention from the drinking water supply companies. It is therefore important to understand the effect of pressure on an HDPE pipe with a surface defect. To answer this problem, we will first study the mechanical behavior at failure of HDPE pipes in the presence of a surface defect using a finite element method. For the rehabilitation of pipe in presence of surface defect, we try to use a new composite. This new laminated composite is reinforced with a natural organic load. It is obtained from a laminated composite woven by incorporating a natural non-polluting organic load (granulates of date cores) which becomes hybrid composite. The new economical hybrid composite material is made of an organic matrix containing methyl methacrylate, a woven reinforcement including a reinforcing glass fiber and a fabric perlon having an absorbing role. The textile reinforcement made up of several folds reinforcing laid out according to the orientations (90, 452, and 0). A numerical simulation with the ANSYS Workbench software is carry out  to study the behavior of the HDPE pipe with surface defect and with defect repaired by the new hybrid composite material in the form of rings to consolidate the cracked area of ​​the tube. The numerical results will allow us to decide on a real practical use of the new hybrid composite.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review of polyethylene pipes: Failure mechanisms, performance models, inspection methods, and repair solutions;Journal of Pipeline Science and Engineering;2024-06

2. Analysis of network useful life and cost-benefits for sustainable water management;Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi;2024

3. Numerical Investigations of Damage Behaviour at the Weld/Base Metal Interface;International Journal of Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3