Revisiting classical concepts of Linear Elastic Fracture Mechanics - Part II: Stretching finite strips weakened by single edge parabolically-shaped notches

Author:

Markides Christos1,Kourkoulis Stavros K2

Affiliation:

1. National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Mechanics, Zografou Campus, 5 Heroes of Polytechneion Avenue, 157 73, Attiki, Greece

2. National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Mechanics, Laboratory of Strength and Materials, Zografou Campus, 5 Heroes of Polytechneion Avenue, 157 73, Attiki, Greece

Abstract

This is the second part of a short three-paper series, aiming to revisit some classical concepts of Linear Elastic Fracture Mechanics. Being the intermediate step of the analysis between infinite domains (discussed in Part-I) and finite bodies (that will be discussed analytically in the third part of the series), the present part offers an alternative theoretical approach for the confrontation of problems dealing with both infinite and finite bodies with geometrical discontinuities. The method is here applied to a stretched, single-edge notched strip. Assuming that the strip is made of a linearly elastic and isotropic material, the complex potentials technique is used. The solution is achieved by extending Mushkelishvili’s procedure, for the confrontation of the prob­lem of an infinite perforated plane. Closed form, full-field formulae are obtained for the stresses all over the notched strip. Using these formulae, the stress concentration factor at the base (tip) of the notch is quantified and studied in terms of the geometrical features of the notch and its dimensions relatively to the respective ones of the strip. The stress distributions plotted along characteristic loci, resemble closely, from a qualitative point of view, the respective ones provided by well-established analytical solutions. Preliminary numerical analyses in progress provide results in very good agreement with those of the present analysis.

Publisher

Gruppo Italiano Frattura

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3