Residual life prediction of defected Polypropylene Random copolymer pipes (PPR)

Author:

Ouardi Abderazzak1,Majid Fatima1ORCID,Mouhib Nadia1,Elghorba Mohamed1

Affiliation:

1. University of Hassan II, National Superior School of Electricity and Mechanics Casablanca (ENSEM), LCCMMS, Morocco

Abstract

The polypropylene random copolymer (PPR) is a thermoplastic material generally used for the transport of water under pressure, especially hot water. PPR pipes are exposed to severe conditions in terms of pressure and temperature, hence the need to characterize their fracture behavior in order to avoid the design risks. Sudden overpressure is one of the most common problems in piping. It can affect the security of goods and the safety of people. In this context, we have performed tests of overpressures at the laboratory scale according to ASTM D1599 standard, on virgin and notched pipes, to characterize mechanically the fracture behavior of PPR pipes. Afterwards, we identify experimentally the evolution of their damage. The calculation of the damage, by experimental damage models, have led to determine the three stages of evolution of the damage, which are the initiation, the progression and the acceleration of it. Therefore, the concept of reliability is used to specify the critical life fraction relative to the notch depth (βc) of a defect modeled as an external longitudinal groove on the PPR pipe. A comparison of PPR and HDPE pipes damage and reliability has been done. Moreover, a theoretical reassessment of the damage level was done through a judicious adaptation of the theoretical model proposed by the unified theory. From the latter, we proved that theoretical and experimental results show good agreement and correlations.

Publisher

Gruppo Italiano Frattura

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3