Abstract
Abstract
Three methods for the determination of the surface tension of liquids based on force measurements namely, the vertical plate method of Wilhelmy, the frame method of Lenard and the ring method of du Noüy are compared and studied in respect of a common principle of correction. It is shown that these three most important force-based methods allow the determination of the surface tension under static conditions. The force components of the corresponding liquid column below the measuring wire obtained for the straight part of the withdrawal curve up to the transition in its curved part provides exact surface tension values. The experimentally accessible value of the force component describes the physical background of the measured value correction contrary to the approximate equations obtained by mathematical way. Usually the determination of surface tension of liquids is based merely at the vertical plate method on exact equations thermodynamically derived whereas in the case of the frame and ring methods correction factors in approximate equations are used. At usual application of the force-based methods under the non-static condition of the withdrawal of a liquid column, the force maximum measured at withdrawal of the measuring object (plate, frame, or ring) is the basis for the determination of surface tension. In these cases, the measured surface tension values are compensated by correction equations for the frame and ring methods which are based on an correction factor and correction tables empirically obtained. The surface tension values obtained in this usual way agree with those obtained by using the force component of the corresponding liquid column below the measuring wire for the straight part of the withdrawal curve up to the transition in its curved part. Problems arising at the force measurements with increasing thickness of the measuring wires inside and outside the rings are discussed.
Subject
Condensed Matter Physics,General Chemical Engineering,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献