Specific Characteristics of Materials Produced by Additive Manufacturing as Compared to Those Produced by Established Manufacturing Methods taking the Example of Alloy 718

Author:

Musekamp J.1,Hoche H.1

Affiliation:

1. Werkstoffanalytik , Technische Universität Darmstadt, Zentrum für Konstruktionswerkstoffe, Staatliche Materialprüfanstalt, Fachgebiet und Institut für Werkstoffkunde, Grafenstraße 2 , 64283 Darmstadt; e-mail:

Abstract

Abstract Micrographs of metallographic sections show that additive manufacturing, with its local heat input and rapid cooling rates, brings about microstructures in metal components that differ from those generated in conventional manufacturing processes, such as casting or forging. The example of samples/components made from the material Alloy 718 and manufactured using a laser (Laser Powder Bed Fusion, abbr.: LPBF, designation according to DIN EN ISO ASTM 52900 [1]) shows a very low coarsely distributed porosity. The porosity is limited to the gas porosity already introduced during the atomization step of the powder manufacturing process. As opposed to the microstructure of conventionally produced Alloy 718, the precipitates formed are very small and can only be revealed in the light microscope when high magnifications are applied. Evenly distributed, cruciform γ” precipitates are formed. The grain structure is formed independent of the LPBF-typical melting zones. Isolated dendritic structures can be observed at the interfaces of the melting zones. In the samples manufactured by LPBF, grain structures in the longitudinal section differ from those in the cross section: It can be observed that the grains are elongated in the build direction, which explains the anisotropic behavior of the materials in the tensile test. The width of the melting zones and the laser track spacing can easily be measured in the cross section, while the depth of the melting zones is well recognizable in the longitudinal section. Mechanical properties such as those found in cast or forged Alloy 718 are already present in the stress relief annealed condition.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Reference24 articles.

1. Untersuchungen zum Drehen und Bohren der Nickelbasislegierung Inconel 718,2014

2. Additive Fertigungsverfahren

3. 3D-Druck beleuchtet

4. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3