Abstract
Abstract
There are many technical applications in which wear is a critical issue. Copper can be filled with particulate materials to enhance the tribological behavior, mechanical and physical properties as well. Copper matrix containing 10 vol.-% Al2O3 and B4C particles were produced using the powder metallurgy method and their dry wear behavior was investigated at different sliding conditions against a hardened alloy steel counterface using Taguchi technique. Four control factors like lubrication, load, sliding distance and hardness were designed in a L18 factorial orthogonal array for the experiments to investigate the wear behavior of the metal matrix composites. Moreover, a correlation derived from the results of Taguchi experimental design was proposed, resulting in a predictive equation for estimation of these properties. The experimental results showed that the weight loss was highly influenced by the lubrication factor, followed by the load factor. However, these were then followed by hardness and sliding distance. The estimated weight loss was calculated and a good agreement was observed between the predicted and actual weight loss at a confidence level of 90%. The wear resistance was significantly better for B4C particle-reinforced composites than that for the Al2O3 particle-reinforced composites. Moreover, the results were approved by scanning electron microscope micrographs of worn surfaces of the samples.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference55 articles.
1. Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles;Tribol. Lett.,2004
2. The new approach of the production technique of discontinuous Cu-C composite;Association of Metallurgical Engineers of Serbia (AMES),2007
3. Metal matrix composites – From science to technological significance;Comp. Sci. Technol.,2005
4. Investigation of the structural;mechanical and electrical properties of Cu-Al-Zn shape memory alloys, Materials Testing,2014
5. The effect of interfacial modifying on the mechanical and wear properties of SiCp/Cu composites;Mater. Lett.,2003
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献