Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing

Author:

Del Re Francesco1,Scherillo Fabio2,Contaldi Vincenzo23,Palumbo Biagio1,Squillace Antonino2,Corrado Pasquale3,Di Petta Paolo3

Affiliation:

1. aDepartment of Industrial Engineering, University of Naples Federico II, Naples, Italy

2. bDepartment of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy

3. cMBDA Italia S.P.A., Bacoli, Italy

Abstract

AbstractAdditive manufacturing refers to a wide class of manufacturing processes based on the progressive building of functional parts through the addition of material layer upon layer. These technologies were first confined to prototyping, but the subsequent development of additive manufacturing processes for further materials, such as metals, has encouraged their worldwide industrial spread, from the biomedical field to the automotive and the aerospace industries. Additively manufactured parts are required to meet high and stable performance, at least comparable to that of conventional wrought materials, so as to comply with strict and well-defined international standards. This paper presents an investigation into the mechanical properties of AlSi10Mg parts produced by laser powder bed fusion technique, using different spatial orientations within the build volume. The effects of the part position and orientation on the static (tensile) properties of the produced parts were assessed by means of the two-way analysis of variance technique. The build angle was found to be the most effective parameter, while the variability ascribable to the effect of part position resulted mainly as physiological. The fatigue resistance showed a globally decreasing trend with increasing build angle.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3