Microstructural evolution and mechanical properties of thixoformed 7075 aluminum alloy prepared by conventional and new modified SIMA processes

Author:

Binesh Behzad1,Aghaie-Khafri Mehrdad2,Shaban Mehdi1,Fardi-Ilkhchy Ali1

Affiliation:

1. Department of Materials Science and Engineering , University of Bonab, Bonab , Iran

2. Faculty of Materials Science and Engineering , K.N. Toosi University of Technology, Tehran , Iran

Abstract

Abstract The microstructural evolution during semi-solid processing and thixoformability of a 7075 alloy prepared by conventional and new modified strain induced melt activation (SIMA) processes were comparatively investigated in this paper. The semi-solid slurries were thixoformed at 600 °C, at which temperature the solid fraction was estimated to be 0.8. The coarsening process of the semi-solid samples was described using Lifshitz–Slyozov–Wagner theory and the effect of pre-deformation on the coarsening kinetics of the solid particles was discussed. The coarsening rate constant of the new modified SIMA sample showed a remarkable decrease compared to that of the conventional SIMA sample. Microstructural and mechanical investigations indicated that the sample with a near-equiaxed microstructure deforms through the plastic deformation of solid grains mechanism. However, the sliding of solid grains and flow of liquid incorporating solid grains mechanisms were dominant in the sample with a globular microstructure. Also, it was observed that the yield and ultimate strengths and hardness of the sample prepared by the new modified SIMA process after thixoforming and T6 heat treatment increased by about 15 %, 10 % and 25 % respectively, compared to those of the conventional SIMA sample.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rapid Thermal Treatment of Oriented Microstructures to Generate Fine Globular Grains;JOM;2024-03-13

2. Effect of pre-torsion on the strength and electrical conductivity of aluminum alloy wire;International Journal of Materials Research;2023-05-18

3. Alloys for semisolid processing;Reference Module in Materials Science and Materials Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3