Injection Molding of Beverage Container Caps Made of a Composite Consisting of Wood Cellulose Fiber and an Ethylene-Acrylic Acid Copolymer

Author:

Ariño R.1,Boldizar A.1

Affiliation:

1. Department of Materials and Manufacturing Technology , Chalmers University of Technology, Gothenburg , Sweden

Abstract

Abstract The influence of processing parameters on injection-molded bottle caps consisting of 20 wt% of cellulose fibers and an ethylene-acrylic acid copolymer was studied. The study included three cylinder barrel temperatures and three mold temperatures. For each combination of temperatures, the holding pressure time was varied and the mold sealing time was determined. High density polyethylene caps were also produced as reference material, and injection-molded tensile test bars were also produced in order to assess the tensile mechanical properties. The results showed no major differences in sealing time for the caps containing cellulose fibers, except for the highest melt and mold temperatures where a slightly longer time was observed. The viscosity of the composite material was higher than that of the polymeric matrix. For the highest temperature and high shear rates, the viscosity of the composite material was close to the viscosity of the matrix material. The moisture content of the injection-molded bars was less than 1 %, showing that almost no water was absorbed during the compounding or after several months. The crystallinity decreased when the fibers were included but was not influenced by the mold temperature. Enhanced mechanical properties were obtained by using the fibers compared to the pure ethylene-acrylic acid copolymer, both in the tensile test bars and in the caps. The reference high density polyethylene had, however, a higher mechanical performance than the composite.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3