Sealability and Seal Characteristics of PE/EVA and PLA/PCL Blends

Author:

Najarzadeh Z.1,Tabasi R. Y.1,Ajji A.1

Affiliation:

1. 3SPack , CREPEC, Département de Génie Chimique École Polytechnique de Montréal, Montréal, Québec , Canada

Abstract

Abstract Seal strength behavior of low density polyethylene and ethylene vinyl acetate copolymer (PE/EVA) blends as well as that of blends of a seal grade PLA with aliphatic polyester (PCL) was studied. Polyethylene is commonly used for seal application in packaging multilayer structures and amorphous PLA is considered to be its counterpart for compostable and/or biodegradables ones. Incorporation of EVA in polyethylene improves its sealability in terms of a decrease in seal initiation temperature and broadness of sealability plateau. This was interpreted as due to the formation of finer crystals, a decrease in the melting point and presence of vinyl acetate polar group. These were supported by results obtained from differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). For the PLA/PCL system, the dispersed phase was stretched into elongated ellipsoidal domains. This type of morphology affected the mechanical and seal properties of the blends. As a result of blending, both hot-tack initiation temperature and strength as well as seal initiation temperature were enhanced. The enhancement in these seal properties was significant when the concentration of the dispersed phase exceeded 20 wt% in the blend. Hot-tack strength of up to twice of pure PLA was achieved through blending. This was attributed to the lower glass transition temperature of PCL, resulting in enhanced mobility of PLA chains and also the high aspect ratio of the dispersed phase. The maximum obtained hot-tack strength (1 200 g/25 mm) at 40 % dispersed content compared advantageously to commercially available polyolefin based sealant resins. The seal and hot-tack initiation temperatures were shifted to lower temperatures by as much as 30 °C, which can allow faster and more energy efficient sealing process.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seal materials in flexible plastic food packaging: A review;Packaging Technology and Science;2023-04-09

2. Structures, Properties and Applications of Rigid Plastics for Orthotic Therapy, Design Requirements and Future Development;Encyclopedia of Materials: Plastics and Polymers;2022

3. Polylactide/poly(ɛ-caprolactone) blends;Sustainable Polylactide-Based Blends;2022

4. Market, current and future applications;Sustainable Polylactide-Based Blends;2022

5. Effect of Back‐layer on seal performance of multilayer polyethylene‐based sealant films;Journal of Applied Polymer Science;2021-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3