Effects of Sparse Long Chain Branching on the Spinning Stability of LLDPEs

Author:

Bortner M. J.1,Doerpinghaus P. J.1,Baird D. G.1

Affiliation:

1. Department of Chemical Engineering and Center for Composite Materials and Structures Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract

Abstract The influence of sparse long chain branching on the onset and propagation of isothermal draw resonance in fiber spinning of polyethylene melts was investigated. Six polyethylene melts were used in this study: three sparsely branched metallocene polyethylenes, a linear low-density metallocene polyethylene, a conventional linear low-density polyethylene, and a conventional low-density polyethylene (LDPE). The sparsely branched metallocene polyethylenes have almost identical shear rheology and molecular weight distributions, but strain harden to different extents under extensional deformation because of slight differences in the amount of sparse long chain branching. Critical draw ratios and the ratios of minimum to maximum diameter were found to be different for each of these polyethylenes. The two linear low-density polyethylenes, which have no long chain branching, had critical draw ratios similar to those of the sparsely branched polyethylenes, but failed (necked to the point of filament breakage) during monofilament extrusion at draw ratios significantly lower than those measured for the sparsely branched polyethylenes. In contrast, the LDPE, which has the highest degree of branching and largest molecular weight distribution, had a much higher critical draw ratio than that obtained for the other five polyethylenes. These results suggest that the degree of extensional strain hardening, arising from differences in long chain branching, has a significant effect on the onset and propagation of draw resonance in isothermal fiber spinning. In the case of LLDPE, broadening the MWD seemed to affect the drawability of LLDPE, but had no effect on the critical draw ratio.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3