Influence of Processing Conditions on Productivity, Thermal and Rheological Properties of Reprocessed Low Density Polyethylene

Author:

Pistor V.1,Chiesa A.1,Ornaghi H. L.2,Fiorio R.3,Zattera A. J.1

Affiliation:

1. Laboratory of Polymers (LPOL), Universidade de Caxias do Sul, Caxias do Sul, Brazil

2. Laboratory of Composite Materials (LACOMP), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

3. Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Caxias do Sul, Brazil

Abstract

Abstract The market for recycled thermoplastic polymers is undergoing a sharp increase, although recyclate polymers are regarded as materials with inferior properties when compared to the virgin material. This study investigates the behavior of non-contaminated scraps of low density polyethylene (LDPE) from the plastic packaging industry after single processing stage, in terms of the productivity and the thermal and rheological properties. The LDPE used was reprocessed on a single-screw extruder (Miotto) of 90 mm screw diameter and L/D = 25. Three screw speeds (80, 90 and 100 min−1) were investigated at three processing temperatures (200, 250 and 300°C). The reprocessed materials were characterized by thermogravimetric analysis TGA, parallel plates rheometry and productivity. The results obtained by TGA showed a typical range of polyolefin degradation (350 to 450°C). The viscoelastic properties did not show significant changes in relation to the rheological behavior. Increasing the temperature and screw speed promoted a productivity gain of approximately 30%. This suggests that under the conditions studied it is possible to reprocess this material with good productivity ensuring its thermal, mechanical and rheological properties.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3