Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye

Author:

Avasarala Balaram Kiran1,Tirukkovalluri Siva Rao1,Bojja Sreedhar2

Affiliation:

1. Andhra University, Department of Inorganic and Analytical Chemistry, Visakhapatnam, India

2. Indian Institute of Chemical Technology, Inorganic and Physical Chemistry Division, Hyderabad, India

Abstract

Abstract The present work is focused on the synthesis of beryllium doped titania (Be+2–TiO2) at different percentages (0.25, 0.5, 0.75 and 1.0 wt.%) by the sol-gel method and its characterization using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform-Infra red and Ultra violet-visible absorption spectroscopic methods. Diffraction peaks of anatase crystalline phase were present in both synthesized TiO2 and Be+2–TiO2. The presence of Be+2 ion in the TiO2 structure caused a significant absorption shift towards the visible region and its presence was confirmed by X-ray photoelectron spectroscopy and Fourier Transform-Infra Red data. The photocatalytic efficiency of the synthesized Be+2–TiO2 and pure TiO2 was evaluated by the degradation of aqueous methyl orange dye under visible light irradiation, where the degradation rate of methyl orange by Be+2–TiO2 was found to be higher than by pure TiO2. This can be attributed to more efficient electron–hole creation in Be+2–TiO2 in visible light and the electrons produced due to photosensitization of the dye can be scavenged by photoexcited doped TiO2 in visible light.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3