Optimization of Injection Molding Process for SGF and PTFE Reinforced PC Composites Using Response Surface Methodology and Simulated Annealing Approach

Author:

Yang T.1,Yang Y.-K.1,Chen C.-Y.1

Affiliation:

1. Department of Mechanical Engineering, Minghsin University of Science and Technology, Hsinchu, Taiwan, ROC

Abstract

Abstract This study is analyzed variations of ultimate strength, friction coefficient and wear mass loss that depend on the injection molding techniques during the blending of short glass fiber (SGF) and polytetrafluoroethylene (PTFE) reinforced polycarbonate (PC) composites. A hybrid method including response surface methodology (RSM) and back-propagation neural network (BPNN) integrating simulated annealing algorithm (SAA) are proposed to determine an optimal parameter setting of the injection molding process. The specimens are prepared under different injection molding processing conditions based on a Taguchi orthogonal array table. The results of eighteen experimental runs were utilized to train the BPNN predicting ultimate strength, friction coefficient and wear mass loss. Simultaneously, the RSM and SAA approaches were individually applied to search for an optimal setting. In addition, the analysis of variance (ANOVA) was implemented to identify significant factors for the injection molding process parameters and the result of BPNN integrating SAA was also compared with RSM approach. The results of optimal parameters of injection molding process for the ultimate strength of x-direction and y-direction based on BPNN/SAA approach were increased 3.12%, and 6.18%, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3