Melting of Polymer Blends in Co-rotating Twin Screw Extruders

Author:

Potente H.1,Bastian M.1,Flecke J.2,Schramm D.1

Affiliation:

1. Institut für Chemie und Technologie der Kunststoffe, University of Paderborn, Paderborn, Germany

2. Bayer Leverkusen, Germany

Abstract

Abstract Part II of the publication describes a model for calculating the melting of polymer blends which has been implemented in the SIGMA simulation software for the design of co-rotating twin screw extruders. The model is based on the findings discussed in Part I and makes it possible to calculate the temperature progression in the solids conveying section and during the subsequent melting process for binary incompatible polymer combinations. The two material components are observed in parallel during the melting process, and the respective degrees of melting over the length of the screw are calculated. The properties of the melt phase, which forms from both components, are calculated with mixing rules implemented in the program. The calculations supply the melting profiles for both components, thereby permitting a comprehensive analysis of the melting of binary polymer combinations. The results additionally form the basis of a calculation to estimate the morphology development of polymer blends in the melting section of the extruder. Part III of the report looks into a means of investigating the melting of binary polymer combinations, and the results of experimental investigations into polypropylene/polyamide blends are discussed. The simulation calculations are compared with the results of experimental studies in order to verify the model presented in this part of the publication.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3