Structure Development in Melt Spinning and Cold Drawing of Poly(ethylene-co-octene) Copolymer

Author:

Shan H.1,White J. L.1

Affiliation:

1. Institute of Polymer Engineering, University of Akron, Akron OH, USA

Abstract

Abstract An experimental study of melt spinning and cold drawing of polyethylene and its Dow Chemical INSITEØ catalyst octene copolymers was carried out. The structure and morphology of both melt spun and cold drawing fibers were investigated using wide angle x-ray diffraction (WAXD), small angle x-ray scattering (SAXS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and birefringence. Up to 5.9 mol.% octene, the fibers exhibit only the Bunn orthorhombic crystal structure. Fibers with 9.7 mol.% and 13.3 mol.% octene, whose DSC crystallinity is 0.23 and below, have an additional reflection at about 0.45nm. The Hermans-Stein orientation factors for the melt spun fibers were determined and correlated with spinline stress. Cold drawn polyethylene fibers exhibited additional reflection at 0.45, 0.38 and 0.35nm which may be associated with the Tanaka-Seto et al. monoclinic unit cell. The copolymers contained a decreased monoclinic level which disappears at about 5.9 mol.%. However, a broad reflection at 0.45nm, reappears at 9.7 mol.% octene. This reflection is also present at the 13.3 mol.% level. It is surmised that a pseudohexagonal or mesomorphic structure is developing. The Hermans-Stein orientation factors were determined for the drawn fibers as a function of cold draw ratio. Drawing results in high crystalline orientation and fibrillation for polyethylene fibers. For copolymers, with higher octene content, the fibrillation decreases.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3