Molten salt synthesis and phase evolution of Ba(Cd1/3Nb2/3)O3

Author:

Deng Jinxia12,Chen Jun1,Yu Ranbo1,Liu Guirong1,Xing Xianran13

Affiliation:

1. University of Science & Technology Beijing, Department of Physical Chemistry, Beijing, China

2. University of Science & Technology Beijing, School of Applied Science, Department of Chemistry, Beijing, China

3. University of Science & Technology Beijing, State Key Laboratory for Advanced Metals and Materials, Beijing, China

Abstract

Abstract Ba(Cd1/3Nb2/3)O3 powder with an octahedral shape stacked by small particles was successfully synthesized by the molten salt synthesis method at a low temperature of 850 °C, which was much lower than the columbite method, two-step solid-state reaction process. Thermogravimetry and differential thermal analysis curves combined with X-ray diffraction analysis determined the phase evolution of Ba(Cd1/3Nb2/3)O3 powder at relative high temperature. Furthermore, Raman results showed that the Ba(Cd1/3Nb2/3)O3 powder had a trigonal order structure. It was indicated that the “template formation mechanism” and crystal habit growth which obeyed the model of anion coordination polyhedral, play an important role in the formation and growth processes. The resulting ceramics exhibited favorable dielectric properties.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3