Affiliation:
1. MINES ParisTech, Centre de Mise en Forme des Matériaux (CEMEF), Sophia Antipolis, France
Abstract
Abstract
This study looks at the influence of extrusion parameters such as screw speed, feed rate and barrel temperature on the nanocomposite structure (size of agglomerates, level of intercalation and exfoliation) and its consequences on final mechanical properties. Nanocomposites of polypropylene, maleated polypropylene and organomodified montmorillonite, with respective mass fractions of 85/10/5, were prepared in a co-rotating twin-screw extruder using a masterbatch dilution method. The nanocomposites structure was quantified by scanning and transmission electron microscopy, X-ray diffraction and dynamic rheometry. Relationships between the microstructure at different levels (size and number of agglomerates, interlayer distance, melt yield stress to quantify the exfoliation level) and the processing conditions were established, revealing that specific mechanical energy received during extrusion was the key parameter controlling this microstructure. Mechanical properties in uniaxial tension (apparent Young's modulus) were measured and related to the microstructural parameters resulting from extrusion conditions.
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献