The effect of pre-structure process on magnetorheological elastomer performance

Author:

Li Jianfeng1,Gong Xinglong1,Xu ZhenBang1,Jiang Wanquan2

Affiliation:

1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, China

2. Department of Chemistry, USTC, Hefei, China

Abstract

Abstract On fabricating magnetorheolgoical elastomer, the mixture of iron particles and un-vulcanized rubber is placed under a curing magnetic field for some time so that iron particles are driven by the magnetic force to form a columnar structure; this process is called the pre-structure process. The microstructure of a magnetorheological elastomer sample is influenced by the pre-structure process, however, few reports address this problem in detail. This paper aims to study the effect of the pre-structure process on the magnetorheological elastomer performance. The pre-structure process is dominated by three influencing factors: magnetic field, curing time and temperature. A variety of magnetorheological elastomer samples were fabricated under different pre-structure conditions and their shear moduli were measured by using a dynamic mechanics analyzer machine. Scanning electron microscope images of these samples were also taken. The results demonstrated the magnetic field-induced modulus shows an increasing trend with magnetic strength before the magnetorheological elastomer samples reach magnetic saturation. The relative magnetorheological effect has an optimal value when the pre-structure field is 110 mT. The effects of the pre-structure time and temperature on the magnetorheological effect were also addressed by using the optimal pre-structure field. These three pre-structure conditions also affect each other. Thus, to fabricate higher-performance magnetorheological elastomer, these pre-structure conditions should be optimized. These results were also explained by study of the particle motion within the matrix.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3