Affiliation:
1. Department of Materials Science and Engineering , Changwon National University Changwon , Republic of Korea
Abstract
Abstract
Grain boundary serration is an effective way to increase the high temperature resistance of superalloys and steels. The popular Alloy 625 Ni-based superalloy was until now believed not to form serrated grain boundaries based on previous considerations of serrability criteria. Following the recent strain-induced serration mechanism, a special heat treatment involving continuous slow cooling between the solution and aging temperature was designed. As a result, significant serration was observed for the first time for Alloy 625 promoted by slow cooling. Grain boundary M
23C6 carbides were systematically detected from either degenerescence of solidification MC carbides or heterogeneous nucleation. Upon aging, serration amplitude increased and precipitation of the δ phase proliferated.
Subject
Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献