Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys

Author:

Falahati A.1,Povoden-Karadeniz E.2,Lang P.12,Warczok P.1,Kozeschnik E.12

Affiliation:

1. Vienna University of Technology, Institute of Materials Science and Technology, Vienna, Austria

2. Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Vienna, Austria

Abstract

Abstract The microstructure evolution in heat-treatable Al-alloys is characterized by a complex sequence of precipitation processes. These can be either endothermic or exothermic in nature and they can be investigated by thermal analysis. The individual peaks identified in a differential scanning calorimetry (DSC) analysis can be correlated to the nucleation, growth and dissolution of certain types of precipitates. Simultaneously, these data can also be obtained by thermo-kinetic simulation based on models implemented, for instance, in the software MatCalc. The simulations make use of information stored in thermodynamic databases, including stable and metastable phases. In the present work, a thermo-kinetic computational analysis of Al–Mg–Si DSC curves is carried out. The comparison with experimentally observed DSC signals for precipitation and dissolution of metastable GP-zones, β″, β′, as well as stable β-Mg2Si and Si precipitates provides a quantitative insight into the kinetics and sequence of precipitation during DSC probing. The combination of thermo-kinetic and experimental DSC analysis offers new possibilities in interpretation of DSC peaks with multiple metastable phases. In the present paper, we discuss the linking of the simulated precipitation sequence with the measured DSC signal. In addition, with the proposed methodology, a consistent set of parameters to describe the non-equilibrium kinetic parameters of a specific alloy system can be obtained, which can substantially aid in alloy and process development.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3