Affiliation:
1. University of Twente, Faculty of Engineering Technology, Department of Elastomer Technology and Engineering, Enschede, The Netherlands
Abstract
Abstract
During mixing of a rubber compound containing silica and silane, the mixer is not only used for the dispersion of the filler and other ingredients, but also for a chemical reaction. These two functionalities of the mixer result in opposite processing requirements: A good dispersion is reached by high shearing forces, increasing the compound temperature. The silanization is not dependent on high shearing forces; it is positively influenced by high temperatures, but with an increasing risk of scorch. Another drawback is the equilibrium between the ethanol concentration in the vapor phase in the void space of the mixing chamber and in the rubber phase, which is limiting the reaction rate of the silanization. Devolatilization of the compound is a crucial factor for the efficiency of the silanization reaction.
In this article a model for devolatilization of a rubber compound in an internal mixer is developed, including a chemical reaction replenishing the volatile component during the devolatilization process. The model is based on the penetration theory, with the main contribution to the devolatilization being convective mass transfer. The main influencing factors, theoretically deducted and practically verified, are temperature, mixer volume, fill factor, rotor speed, reaction time and partial pressure of the volatile component in the void volume of the mixer.
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献