An Experimental Setup to Measure the Transient Temperature Profiles in Water Assisted Injection Molding

Author:

Liu S.-J.1,Su P.-C.1

Affiliation:

1. Polymer Rheology and Processing Lab., Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan

Abstract

Abstract Water assisted injection molding technology has gradually become an important process for making hollow plastic parts, due to its light weight, relatively lower resin cost per part, faster cycle time, and its flexibility in the design and manufacture of plastic parts. Study of the temperature profiles in molded parts is of fundamental importance to a more complete understanding of many complicated phenomena. This report presents a novel experimental setup which allows the in-situ measurement of three-dimensional temperature field in the depth of molded parts throughout the molding cycles. A specific mold equipped with tubular needles for guiding embedded micro-thermocouples was designed and manufactured. Experiments were carried out on a lab developed water assisted injection-molding system, which included an injection molding machine, a water pump, a water injection pin, a water tank equipped with a temperature regulator, and a control circuit. The resin used was semi-crystalline polypropylene. The in-cavity temperature of the polymeric materials during the molding cycle was measured. In addition, an unsteady-state, nonlinear heat transfer model of water assisted injection molding has been proposed to numerically simulate the in-depth temperature profiles. It is shown that the numerical predictions are in good agreement with experimental data. Experimental investigation and numerical simulations of a water assisted injection molding cooling process will provide an improved understanding of the influence of water related parameters on the cooling process of water assisted injection molded parts.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3