Affiliation:
1. University of Paderborn, Institute for Polymer Processing, Paderborn, Germany
Abstract
Abstract
The mathematical models so far available for describing the throughput behavior of plasticising extruders were developed with the assumption of a wall-adhering melt. There are, however, a series of plastic melts, and also elastomers, polymer suspensions, ceramic materials and food products that display wall slippage during processing. A mathematical model has been developed for this material behavior, which describes the flow behavior for the unidimensional, Newtonian, isothermal case.
Apart from the development of the analytical model, the flow behavior of wall-slipping polymer melts was also analysed with the aid of finite element calculations (FEM). A comparison of the results for the pressure/throughput behavior shows that the calculation results tally very well for the two methods. It is thus possible to develop a procedure which makes it possible to describe the phenomenon of wall-slippage for the non-Newtonian, multi-dimensional, non-isothermal case.
Subject
Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献