On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)

Author:

Dewobroto N.12,Bozzolo N.1,Barberis P.3,Wagner F.1

Affiliation:

1. LETAM (Laboratoire d'Etude des Textures et Application aux Matériaux), University Paul Verlaine – Metz, France

2. present address: Department of Microstructure Physics and Metal Forming, Max Planck Institute for Iron Research,Düsseldorf, Germany

3. Cezus Research Centre, Ugine, France

Abstract

Abstract Low alloyed zirconium sheets (Zr702) have been cold-rolled up to 80% thickness reduction and submitted to various isothermal treatments. The aim was to identify the mechanisms which produce microstructure and texture changes during recrystallization and grain growth. XRD and texture analysis, FEG–SEM with EBSD as well as TEM were used to analyze the various specimens. Three types of substructures were observed in the initial deformed material. Accordingly, the nucleation starts in the most deformed areas and continues in the somewhat less deformed areas, which corresponds to a non oriented nucleation and results in a set of new grains, the size of which is very rapidly stabilized. In the last stage of recrystallization, the grains which have resisted the recrystallization disappear progressively by several mechanisms including in situ recrystallization. Therefore, the texture at the end of the recrystallization resembles the one of the deformed state. Normal grain growth leads to a moderate grain size increase due to the precipitates which slow down the grain boundary motion. This is also the stage where the texture changes due to the size advantage, after recrystallization, of grains in some specific orientations.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3