Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases

Author:

Oates W. A.1,Bencze L.2,Markus T.3,Hilpert K.3

Affiliation:

1. Institute for Materials Research, University of Salford, Salford, U.K.

2. Dept. of Physical Chemistry, Roland Eötvös University, Budapest, Hungary

3. Institut für Werkstoffe und Verfahren der Energietechnik IWV2, Forschungszentrum, Jülich, Germany

Abstract

Abstract Results from our recent simultaneous measurement of all three component activities by Knudsen effusion mass spectrometry, together with results available in the literature from vacancy concentration and calorimetric measurements, have been used in a thermodynamic modelling study. The results of this modelling for the binary B2-AlFe and B2-AlNi phases are presented in this communication. A four-sublattice cluster energy model in the point approximation has been used for the configurational contributions to the Gibbs energy. Excitational free energies are incorporated into the configurational energy and non-configurational contributions are considered to be decoupled from the configurational. The modelling has been found to lead to good agreement between calculated and experimental results for both the thermodynamic properties and the vacancy concentrations. It is clear that B2-AlFe is an antisite defect compound at both the lowest and highest temperatures with vacancy defects only predominating, and to only a small degree, at stoichiometry in an intermediate temperature range. In the case of B2-AlNi, however, vacancy defects predominate at stoichiometry over the whole temperature range so that it can be correctly described as a near-triple defect compound.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3