Thermal and Crystallization Behaviour of Polyphenylene Sulfide in Engineering Polymer Blends with HDPE

Author:

Nadkarni V. M.1,Shingankuli V. L.1,Jog J. P.1

Affiliation:

1. Polymer Science and Engineering Group, Chemical Engineering Division, National Chemical Laboratory, Pune, India

Abstract

Abstract The thermal and crystallization behaviour of polyphenylene sulfide (PPS) in its blends with high density polyethylene (HDPE) is reported. Three grades of HDPE ranging in MFI from 0.4 to 52 were used in the investigation. The effect of composition and molecular weight of HDPE on the crystallization process and morphology of PPS in the blends has been investigated by the technique of Differential Scanning Calorimetry (DSC). In the blends, PPS crystallizes in presence of molten HDPE. It is observed that the morphology of PPS in terms of crystallite size and crystallite size distribution in the blends is significantly affected by blending with HDPE. The temperature onset of melting was found to increase with increasing HDPE content and the melting peak width was found to decrease with increasing HDPE content. This indicates a larger crystallite size and a narrower crystallite size distribution of PPS in blends. The effect is more pronounced in HDPE-rich compositions. The extent of the variation in the temperature onset of melting and peak width were comparable for all the grades of HDPE. The degree of crystallinity of PPS in the blends is reduced significantly (55–70%) in HDPE-rich blends. Therefore, it is concluded that the crystallization of PPS is affected by the presence of HDPE melt. The crystallization scans of PPS in the blends, obtained in the cooling mode, did not show any evidence of accelerated nucleation. On the other hand, a marginal reduction in the temperature onset of crystallization was observed. The temperature range of crystallization of PPS in the blends was found to be less for all compositions except for 90/10 (PPS/HDPE). In summary it is concluded that blending of HDPE with PPS influences the crystal growth of PPS significantly although the effect on its homogeneous nucleation is also considerable. As a result, the morphology of PPS crystallized in blends is different from that of the homopolymer. The changes in the morphology of PPS are not sensitive to the molecular weight of HDPE probably because of the high temperature of PPS crystallization relative to the melting point of HDPE.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,Polymers and Plastics,General Chemical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3